
A Fault D etection Service for W ide A rea D istributed C om putations

PaulStelling1 Ian Foster2 CarlKesselm an3 Craig Lee1 Gregorvon Laszewski2

1 TheAerospaceCorporation 2 M athem aticsand Com puterScience
ElSegundo,CA 90245-4691 ArgonneNationalLaboratory

Argonne,IL 60439
3 Inform ation SciencesInstitute
University ofSouthern California

M arina delRey,CA 90292

A bstract

Thepotentialforfaultsin distributed com putingsys-
tem s is a signi c ant com plicating factor for applica-
tion developers. W hile a variety oftechniquesexistfor
detecting and correcting faults,the im plem entation of
these techniques in a particular context can be di -
cult. Hence, we propose a fault detection service de-
signed to be incorporated, in a m odular fashion, into
distributed com puting system s, tools, or applications.
This service uses well-known techniques based on un-
reliable faultdetectors to detectand reportcom ponent
failure,while allowing the userto tradeo tim elinessof
reporting againstfalse positive rates. W e describe the
architecture ofthis service,reporton experim entalre-
sults thatquantify its costand accuracy,and describe
its use in two applications, m onitoring the status of
system com ponents ofthe GUSTO com putationalgrid
testbed and aspartoftheNetSolvenetwork-enabled nu-
m ericalsolver.

1 Introduction

A m ajordi erence between distributed and sequen-
tialcom puting,as they are usually practiced,is that
in a distributed com putation,individualcom ponents
m ay failwithout the entire com putation being term i-
nated.Indeed,com ponentsm ayfailwithouttherestof
thecom putation being awarethatfailurehasoccurred.
These phenom ena representboth an opportunity and
a challenge. The opportunity is that a com putation
can, in principle, continue to operate despite failure
ofindividualcom ponents. The challenge is that new
techniquesarerequired fordetectingand respondingto

com ponent failures. M any years ofresearch on these
topicshave yielded a considerable body oftheoretical
and practicalknowledge offault detection,handling,
and recovery techniques.
In ourwork,weapproach theseissuesfrom theper-

spective ofthe userofwhatare term ed com putational
grids[9],thatis,networksofcom puting resources,of-
ten high-perform ance com puters,intended to be used
in an integrated fashion for such problem s as collab-
orative engineering,com putationalsteering,and dis-
tributed supercom puting. G rid program m ers often
want to adapt existing com putationalm odels, tools,
orapplicationsfordistributed execution.They require
servicesthatsim plify thistask by encapsulating com -
plexaspectsofdistributed com putingenvironm ents.In
previous work,we have developed and dem onstrated
the utility of services for resource location, resource
allocation,inform ation,com m unication,security,and
data access,collectively term ed the G lobustoolkit[8].
Theseservicesusesim plelocalm echanism sto support
a variety ofglobalpolicies. For exam ple,the G lobus
resourcem anagem entservice deploysjusta sim ple lo-
calm anager at each m anaged resource,but supports
a variety ofm anagem entpoliciesvia resource brokers
and co-allocators[6].
In this paper, we propose a low-level service to

supportfault handling strategiesin grid applications.
Theseapplicationsm ay wantto respond to com ponent
failurein a variety ofways.Forexam ple,they m ay

 term inatethe entireapplication (i.e.,fail-stop);

 ignorethe failureand continueexecution;

 allocate a new resource and restartthe failed ap-
plication com ponent[13,4];or

 use replication and reliable group com m unication
prim itivesto continueexecution [1,15].

Each ofthese behaviors has costs and bene ts asso-
ciated with it and the appropriate behavior will be
application-dependent.
To date,grid applications have either ignored fail-

ure issues or have im plem ented failure detection and
response behavior com pletely within the application.
This approach places an undue burden on the appli-
cation developer and com plicates the design and de-
velopm ent of grid applications. The situation could
beim proved considerably iftheunderlying grid infras-
tructure provided basic services that support the im -
plem entation ofapplication speci c failure behaviors,
such asthosedescribed above.
In this paper,we considerthe nature ofthese grid

services and propose a speci c service based on fault
detectors,which detectwhen a system com ponenthas
failed and notify the application of that fact. Fac-
torssuch asthehighly variablecom m unication latency
and best-e ort service provided by today’s wide area
networks, and the need to construct a scalable ser-
vice im pact the design of the fault-detector. These
pragm atic issues dictate that we consider an unreli-
able fault-detection service which m ay som etim es re-
porta resource to have failed,only to retractthatre-
port at a later tim e. W e have designed and im ple-
m ented such a service and have dem onstrated that a
rangeofapplication-speci c faultbehaviorscan beim -
plem ented on top ofthisservice.
In Section 2,wediscussthe natureoffaults,review

som e basic results in distributed system s, and show
why fault detection is an appropriate basic service to
provide in the grid. In Section 3,we de ne a system
m odelwhich weuse to de ne an faultdetection archi-
tecture.In Section 4,wepresenta design fora speci c
im plem entation of a fault detection service and dis-
cusshow thisservicehasbeen used to constructfault-
tolerantgrid applications(Section 6).In Section 5,we
provideresultsthatquantify the accuracy ofourfault
detectorin a realisticwide-area environm ent.W ethen
com pare our approach with other approachesto con-
structing fault-tolerantgrid applicationsand conclude
with a discussion offuture work.
In sum m ary,thecontributionsoftheworkdescribed

in thispaperare:

 W e propose the unreliable faultdetectorasa ba-
sic grid service and propose a speci c fault de-
tection architectureand im plem entation forwide-
area com putationalenvironm ents.

 Usingexperim entaldata,wedem onstratethatour

approach to fault detection can be im plem ented
e cien tly and accurately.

 W e dem onstratethatthe proposed servicecan be
used to im plem entusefulbehaviorsin distributed
com puting system sand applications.

2 Faults and D istributed System s

Com ponentsofa distributed system can failin dif-
ferentways[18]. In the sim plestcase ofcrash failure,
a com ponent sim ply ceases to function, for exam ple
due to an operating system crash orthe severing ofa
network connection. A specialcase ofcrash failure is
fail-stop failure,in which a crash resultsin thecom po-
nent transitioning perm anently to a state that allows
othercom ponentsto detectthatithasfailed (e.g.,by
ceasing to send periodic \i-am -alive" m essages).M ore
com plex failure m odes are also possible,for exam ple
when a com ponentfailsby notfunctioning \correctly,"
such aswhen am em orychip returnsan incorrectvalue,
a packetiscorrupted during transitoverthe network,
or (in the extrem e,so-called Byzantine case)because
a com ponentoperatesin a m aliciousfashion,perhaps
causinga generalfailureorobscuringtherealsourceof
the failure.
In this paper,we focus on the problem ofdetect-

ing fail-stop crash failures. W hile in som e situations,
system com ponentscan detectand correcteven Byzan-
tinefailuresthrough theuseofm echanism ssuch asre-
dundancy and retransm ission,thisisdi cult and m ay
require detailed knowledge about the com ponents in
question. Furtherm ore,m any such failure m odes are
m asked atthe com ponentlevel.
W e areinterested in the question ofwhatbasicser-

vicesshould be provided aspartofa distributed com -
putationalinfrastructureto supportfaultrecovery.To
gain insightinto thisproblem ,itisinteresting to con-
siderwhatistheleastam ountofinform ation needed to
im plem entsom e basic reliable distributed algorithm s,
such as Consensus. In the Consensus algorithm ,all
functioning processes m ust propose and unanim ously
agree on a value,in spite ofthe fact that any ofthe
participatingprocessesm ayfailduringtheexecution of
thealgorithm .Consensushasinterestingpracticaluses
asitcan be used to im plem entessentialfault-tolerant
functionssuch asleaderelection and voting.
A fundam ental result from distributed system s is

that Consensus can not be im plem ented in a dis-
tributed system subjectto crash failuresifthe system
isasynchronous,i.e.,ifno tim ing assum ptionscan be
m ade,such astheam ountoftim eittakesfortwo pro-
cessesto com m unicate orthe am ountoftim e ittakes

2

foran operation to com plete [7]. Note thatthisasyn-
chronous distributed system m odel corresponds well
with thebest-e ort serviceprovided overcurrentwide
area networks.
O nesolution to thisproblem isto augm entthe dis-

tributed system with additionalinform ation,such as
knowledgeaboutwhich system com ponentshavefailed.
G iventhisinform ation,itispossibletoim plem entCon-
sensusin thepresenceofcrash failure.Lessform alfail-
urebehaviors,such asrestart,can also bede ned with
respectto failuredetection.Failuredetection provides
asound foundation on which to build a rangeoffailure
behaviorsand as such,we conclude that it should be
provided as a basic service in distributed com puting
environm ents.
It is interesting to consider what are the weakest

properties that a failure detector can have and still
be useful. In [5],it is shown thatConsensusin asyn-
chronous distributed system s can be solved with an
unreliable failure detector: a failure detectorthatcan
erroneously indicate thata com ponenthasfailed only
to correctthis errorata latertim e. Furtherm ore,an
unreliablefailuredetectorcan bedistributed,with each
com ponentofthe system having accessto itsown de-
tectorand each detectorpotentially producinga di er-
ent account ofwhich system com ponents have failed.
Thisresultholdsaslong asthe failure detectorm eets
som em inim alrequirem entsforcom pletenessand accu-
racy.In particular:

 all failed com ponents are eventually discovered
and perm anently identi ed assuch,and

 atleastonefunctioning com ponentisknown to be
functioning by allfunctioning com ponents in the
system aftersom epointin tim e.

From the perspective ofproducing a practicalser-
vice, unreliable failure detectors have severaladvan-
tagesoverreliabledetectors.Becauseeach com ponent
can haveaccessto itsown failure detector,and detec-
tors do not have to agree about what com ponents of
thesystem havefailed,theservicedoesnothaveto be
centralized,nordo we need to provide a globally con-
sistentstate acrossdetectors.Furtherm ore,unreliable
com m unication protocolscan beused to im plem entan
unreliable failure detector. These protocols have the
advantageofloweroverheads,lowerlatency and better
scalablity. Forthese reasons,an unreliable failure de-
tectorwillbem orescalable,sim pler,and m oree cien t
to im plem entthen a reliabledetector.
An unreliable failure detection service is not with-

out lim itations. Provably correct algorithm s guaran-
tee term ination by a com bination ofiteration and the

factthatthefailuredetectorwilleventuallyidentify all
failed com ponents and at least one functioning com -
ponent.In realsystem s,thisunbounded waitisunac-
ceptable asitcan be the case thatthe costofwaiting
foran absolutely correctdeterm ination m ay exceed the
costthatwould beincurred ifwesim ply assum ed that
the failure detectorwascorrectand took action based
on thisassum ption.
Ultim ately,thedecision asto when theinform ation

provided by a failure detector is to believed m ust be
the responsibility ofan application;the failure detec-
tor cannot interpret its results. An application m ust
use the inform ation provided by the failure detector
to m ake a decision based on the probability ofa fail-
ure reportbeing in error,the application-speci c cost
ofperform ing som e action ifthe reportwasfalse,and
theapplication-speci c costofnotperform ing thatac-
tion ifthereportwasin facttrue.Clearly,inform ation
aboutthereliabilityofthefailurecollectorisnecessary.
In Section 5,we show thatthe probability ofan erro-
neousreportisgenerally low,and decreasesthelonger
thatonewaits.
In sum m ary,weproposethata distributed com put-

ing environm ent should provide unreliable failure de-
tection asa basic service,providing noti cation when
system com ponentsm ighthavefailed and leaving itto
theapplication tointerpretthisinform ation based on a
characterization ofthefaultservice,futureinform ation
provided by the serviceand application requirem ents.

3 D esign ofa Fault D etection Service

W e now consider issues that arise in designing the
proposed fault detection service. W e discuss the en-
tities for which we wish to detect failure,the design
goals for our fault detection service,and the overall
architectureofthisservice.

3.1 System Model

W e rst de ne a m odelforthe system being m oni-
tored by the faultdetector. Thism odelidenti es the
visiblecom ponentsofthesystem and hencedeterm ines
whattypesofentitiesthefaultdetectorneedsto m on-
itor. In principle,system com ponentscould be entire
sites,speci c com puters,processorswithin acom puter,
processes,threads,networkinterfaces,networkconnec-
tions,orany num berofotherlow-levelsystem abstrac-
tions.Forreasonsofcom plexity,utility and overhead,
we have chosen to m odelthe system as consisting of
processesand com puters.
O ur ultim ate goalin constructing the fault detec-

toristo enabletheconstruction ofrobustapplications,

3

nottodiagnosethecausesofsystem orapplication fail-
ure.Considering a com puterasa singleunitprohibits
the detection ofsom e types offailure,such as a spe-
ci c disk going o -line. However,it is often the case
thatfailuresofacom ponentofacom puteraredetected
by underlying system m echanism sand causetheentire
com puterto fail.A sim ilarargum entcan be m ade for
notconsidering low-levelsoftwareabstractionssuch as
threads.In both cases,weconsideredthecostofhaving
thefaultdetectordealwith such low-levelabstractions
asoutweighing any potentialbene ts.
Notethatwedonotincludenetworksascom ponents

to bem onitored.Detection ofnetwork failuretendsto
be di cult because itishard to discrim inate between
hostfailure and network failure withoutthe existence
ofa second,independentpath.Furtherm ore,theiden-
ti cation ofsuch pathswhen they existrequiresboth
detailed knowledgeofnetwork topology and coordina-
tion am ong distributed m onitors. Forreasonsofsim -
plicity and generality,welim itm onitoring to processes
and hosts. Note that m onitoring processes and hosts
does serve to m onitor indirectly the network connec-
tionsbetween thesem onitored objects.

3.2 Design Goals

G iven this system m odel,we consider the require-
m entswhich thefaultdetectorm ustsatisfy.Them ain
concerns that should be addressed in the design ofa
faultdetectorforgrid environm entsare:

 Scalability.Thedesign ofthefaultdetectorm ust
becapableofscalingtolargenum bersofprocesses
and com puters.

 A ccuracy and com pleteness.The faultdetec-
torm ustidentify faultsaccurately,with both false
positivesand falsenegativesbeing rare.

 T im eliness. Problem s m ust be identi ed in a
tim ely fashion, so that responses and corrective
actionscan be taken assoon aspossible.

 Low overhead. M onitoring should not have a
signi can tim pacton the perform ance ofapplica-
tion processes,com puters,ornetworks.

 Flexibility. W e want to support a range of
application-speci c faultdetection policiesand us-
age m odels. For exam ple,applicationsm ay wish
to controlwhich entities are m onitored,how of-
ten they arem onitored,thecriteria used to report
failure,and wherefailuresarereported.

Monitored
Process

Process Status
Inquiry

Process
Registration

Local Monitor

Host N

Monitored
Process

Process Status
Inquiry

Process
Registration

Local Monitor

Host 1

...

... Data Collector 1 Data Collector N

Figure 1. Architecture of a fault detector for
monitoring computers and processes

3.3 A Fault Detection Service Architecture

Asillustrated in Figure1,ourfaultdetection service
architectureisde ned in term softwo typesofentities:

1.A localm onitor is responsible for observing the
state ofboth the com puteron which itislocated
and any m onitored processeson thatcom puter.It
generatesperiodic\i-am -alive"m essagesorheart-
beats,sum m arizing thisstatusinform ation.

2.A datacollectorreceivesheartbeatm essagesgener-
ated bylocalm onitorsand actuallyidenti es failed
com ponentsbased on m issing heartbeats.

As we shallsee in the nextsection,thisseparation
oflocalm onitorand data collectorfunctionsprovides
considerable exibilit y in how wehandlefaults.
Scalability and perform ance concerns require that

theheartbeatscom m unicated by thelocalm onitorsbe
transm itted via a connectionless,typically unreliable
protocol.Hence,the data collectorm usttake into ac-
count network delays and possible packet loss when
interpreting a lack ofheartbeatfrom a particularlocal
m onitor.W e discussthese issuesbelow.

4 A Fault D etection Service

W e now discuss the im plem entation of a speci c
fault detector service, nam ely the G lobus Heartbeat
M onitor(HBM),which providesa faultdetection ser-
viceforapplicationsdeveloped with theG lobustoolkit.
HBM com prisesthreecom ponents:

4

 A localm onitor, responsible for m onitoring the
com puteron which itruns,aswellasselected pro-
cesseson thatcom puter.

 A client registration API, which an application
uses to specify the processes to be m onitored by
the localm onitor, and to whom heartbeats are
sent.

 A data collector API,which enables an applica-
tion to be noti ed aboutrelevanteventsconcern-
ing m onitored processes.

In brief,an application thatwishesto usetheHBM
serviceneedsto do justtwo things:

1.Registertheprocessesforwhich failuredetection is
required,eitherby calling theregistration APIdi-
rectly,orbyhavingtheregistrationfunction called
externally on behalfofthe application.

2.Use the data collector API to construct a data
collectorthatim plem entsthedesired application-
speci c faultbehavior,whetherthisisglobalter-
m ination,rescheduling ofa failed com ponent,fur-
thertestingtoverifythatfailurehasoccurred,etc.

W edescribetheseaspectsoftheHBM servicein turn.

4.1 Client Registration API

G lobus-based grid system s m aintains a HBM local
m onitorforeach G lobus-m anaged resource.Hence,the
G lobus user need not be concerned with creating or
m aintaining theseprocesses.Thelocalm onitoristyp-
ically run on theresourceitself,to sim plify thetask of
m onitoring the statusofthe resourceand ofprocesses
running on the resource. O n workstationsand shared
m em ory com puters,such astheConvex Exem plar,the
localm onitorrunsdirectly on them achinein question.
O n distributed m em ory com puters such as the Cray
T3E,thelocalm onitorrunson a tightly coupled front
end orservicenode.
A processm ustbeexplicitlyregisteredwith thelocal

m onitorforitsstatusto bereported.A clientregistra-
tion APIisprovided forthis purpose. This APIm ay
be called either from within the application program
or externally by a separate process. The registration
processprovidesthelocalm onitorwith theidentity of
the process to be m onitored,the identity ofthe data
collector(s)to which processheartbeatsareto besent,
and a heartbeat interval. O n term ination,processes
use an unregisterfunction provided by the clientAPI
to disconnectfrom thelocalm onitor,preventing them
from being reported asfailed.

The localm onitor can use a range ofm ethods to
determ ine the status ofregistered processes. W e cur-
rently use the standard UNIX ps com m and to report
on m onitored processes. The /etc/proc m echanism
found on m any UNIX platform scould also be used.
The localm onitorreportsthe statusofeach m oni-

tored processto the appropriatedata collectorsatthe
tim eofprocessregistration and unregistration,and at
 xed speci ed intervals in between. A separate m es-
sageofsize70-90 bytesissentforeach m onitored pro-
cess.Thism essage includesdata identifying the m on-
itored process and its current status. In addition to
processheartbeats,the localm onitoralso generatesa
heartbeat for itself,allowing an application to detect
a resource failure even ifthere are no m onitored pro-
cessesrunning on thatresource.
Heartbeat data is sent to the data collectorsusing

an unreliable datagram service: speci cally ,the UDP
protocol.W echosethisprotocoloverthereliableTCP
protocolforseveralreasons.First,TCP isconnection-
oriented and consum es resources on both the sender
and receiver. The overhead associated with UDP is
less,m aking this solution m ore scalable than ifTCP
had been used. Second,the fact that TCP is a reli-
ableprotocoltendstointroduceadditionallatency into
com m unication operations.G iven thatheartbeatsare
tim esensitive,introduction ofadditionallatency in the
delivery ofheartbeatdata isilladvised.Finally,when
available,we wanted to have the option to use m ulti-
castto send data from a localm onitorto an arbitrary
and dynam ic set ofdata collectors,and TCP cannot
be used in conjunction with m ulticast.

4.2 The Data Collection API

The HBM data collection API allows for the con-
struction ofapplication-speci c data collectors. The
APIiscallback-based,allowing an application to reg-
ister a function to be called when an event ofinter-
estoccurs.W hen m aking a callto the data collection
API,an application providesa callback function along
with an eventm ask to indicatetheeventsthecallback
should becalled on,such asalateheartbeatoraheart-
beatreceived.
The API im plem entation keeps track of allregis-

tered processesand recordswhenever a heartbeat ar-
rives. Since the data collector knows the frequency
atwhich heartbeatsare being generated by registered
processes,it can infer m issing heartbeats. The API
can generate callbacksform issing heartbeatsforindi-
vidualprocesses,orfor the host itself. Callbackscan
alsobeissued when othereventsofinterestoccur,such
aswhen a new processisregistered,orwhen a process

5

unregistersorisreported ashaving failed.
Note that the function ofthe data collection API

islim ited to keeping track ofheartbeatsand invoking
callbacksinto the application. An application-speci c
data collectorm ustprovidea setofcallback functions
that im plem ent the desired responses in response to
the HBM callbacks. Again,it is the responsibility of
the application to m ake the determ ination asto com -
ponentfailure based on how late the heartbeatis,the
requirem entsofthe application,and the type offault
recovery being im plem ented.
W enotethatthestructureofthedatacollectionAPI

o ers usagreatdealof exibilit ynotonlyin how adata
collectorisim plem ented,butwhere itisim plem ented
as well. Data collection functions can be integrated
intothebasicalgorithm sofan application,provided by
specialized m odulesstarted aspartofthe application,
orby separate,stand-alone program s. This exibilit y
furtherprom otesthe use ofthe HBM to im plem enta
widerangeoffaultbehaviors.

5 Experim entalR esults

W e areconcerned with two aspectsofHBM perfor-
m ance: rst, the costsassociated with m onitoring (at
hosts,network,and datacollectors),particularlyasthe
num berofm onitored hostsincreases;and theaccuracy
ofthe HBM reports: that is,how quickly a failure is
reported,and how frequently such reportsturn outto
beincorrect.W ediscussthesetwoissuesin thissection
and reporton experim entalresultsthatprovide som e
insightsinto these questions.
Asdiscussed above,HBM m onitorssend heartbeat

m essages to data collector(s) at regular intervals. In
addition to recording and handling failures reported
by the localm onitors,the HBM data collector m ust
diagnose potentialcom ponent failure when no heart-
beatm essage hasbeen received from thatcom ponent
foraspeci ed am ountoftim e.Thedatacollectorisnot
guaranteed to receiveallsuch m essages,asheartbeats
m ay belostordelayed fora variety ofreasons,includ-
ing network congestion,scheduling delaysatthe local
m onitorordata collector,and network failure.Hence,
there is always the possibility that the data collector
m aydiagnoseacom ponentashavingfailed when ithas
not.Forthisreason,any discussion ofHBM accuracy
involvesa tradeo between the am ountoftim e weare
prepared to waitbefore concluding thata com ponent
hasfailed,and thenum beroffalsereportsthatweare
prepared to dealwith.
O ur goalis to m inim ize som e function of report-

ing delay,false positive rates,and system overheads.
The param etersthat we can controlare system costs

sp001.sdsc.edu

fr1n12.mhpcc.edu

Los Nettos

Genuity.net

ES Net

DREN

CERFnet

sleipnir.aero.org
positron.aero.org

Aerospace LAN

yucon.mcs.anl.gov
pitcairn.mcs.anl.gov

Argonne LAN
neptune.cacr.caltech.edu

Caltech LAN

bolis.isi.edu
flash.isi.edu

ISI LAN

Figure 2. The nine hosts used in the HBM ex-
periments, showing their connectivity, which
included local area networks, a metropolitan
area network (Los Nettos, a 100 Mb/s network
in southern California), and the Internet.

(by which we m ean prim arily heartbeatfrequency,al-
though the priority given to HBM processes and to
HBM network tra c can also be costissues)and de -
nition offailure.Notethatthesevariablescanbevaried
on a per-com ponentbasis.
Previousresearch [2,16,3,17]providessom e rele-

vantdata. For exam ple,in a 1992 study in which 32
byte packetswere sentovera 128 K b/s transAtlantic
link atregularintervalsforextended periods,Bolotob-
serveshigh lossrates(9%)butnotesthatlossesarees-
sentially independentaslong asprobe tra c accounts
for less than 10% ofavailable bandwidth. In a 1997
study,Borella etal.[3]analyzed tra c between three
pairs ofsites located variously within a m etropolitan
areaand on awideareanetwork.They sentan 80byte
packetevery 30 m secand observed packetlossratesof
0.36% ,0.61% and 3.54% for the three pairs. Losses
were seen to be bursty,but the m ean loss burst size
of6.9 (around 200 m sec) suggests that loss rates for
packets sent at 10 sec intervals would be essentially
independent.Sim ulation studiesshow sim ilarresults.
In orderto obtain m ore detailed data on lossrates

we conducted ourown studies. W e studied HBM per-
form ance on an experim entalsystem com prising the
nine hostsshown in Figure2.A localm onitorateach
hostsentheartbeatstodatacollectorsateveryhost(in-
cluding itself) at 10 second intervals for severaldays,
during which tim e a totalof3,835,905 m essageswere
sent, ofwhich 93.6% were received. The (m odi ed)
datacollectorslogged tim estam ped heartbeatsforsub-
sequentanalysis.
W eusetheheartbeatsreceived ateach hostto com -

6

1

10

100

1000

10000

100000

1000000

0 20 40 60 80 100 120 140 160 180 200 220 240

Seconds Between Heartbeats

N
um

be
r

of
 O

cc
ur

en
ce

s +
 1

Figure 3. Histogram representation of the interarrival time data observed at bolas, one of the nine
hosts in our experimental testbed, showing the distribution of interarrival times. Each of the peaks
on the far right represents a single heartbeat.

0.00001

0.0001

0.001

0.01

0.1

1

0 20 40 60 80 100 120 140 160 180 200 220 240

Time in Seconds

Fr
ac

tio
n

of
 In

te
rv

al
s >

 X
 V

al
ue

ISI:bolas
ISI:flash
TAC:positron
TAC:sleipnir
CIT:neptune
SDSC:sp001
MHPCC:fr1n12
ANL:pitcairn
ANL:yukon

Figure 4. Interarrival times observed at bolas for heartbeats arriving from each of the nine hosts,
expressed in terms of proportion of heartbeats with interarrival time greater than X .

7

1

10

100

1000

10000

100000

1000000

10000000

0 20 40 60 80 100 120 140 160 180 200 220 240

Seconds Between Heartbeats

N
um

be
r

of
 O

cc
ur

en
ce

s +
 1

Figure 5. Histogram representation of all interarrival times observed at all nine hosts.

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 20 40 60 80 100 120 140 160 180 200 220 240

Interval in Seconds

Fr
ac

tio
n

of
 In

te
rv

al
s >

 X
 V

al
ue

Figure 6. Interarrival times across all nine hosts, expressed in terms of proportion of heartbeats with
interarrival time greater than X.

8

pute interarrivaltim es. The results are sum m arized
in four gures. Figures 3 and 4 present results from
the point ofview ofa single host,bolas at ISI;Fig-
ures5 and 6 provideresultsforallheartbeatsreceived,
sum m ed acrossallhosts.
Figures3and 5expressresultsasahistogram ,show-

ing thefrequency with which variousinterarrivaltim es
areobserved.Becauseheartbeatpacketsaregenerated
every 10 seconds,and m essageslossesareindependent,
weexpecta largepeak at10 seconds(correspondingto
packetsthatarrivewith no intervening lostpacket);a
second step at an interarrivaltim e of20 seconds cor-
responding to onelostpacket;and so on.Thisism ore
orless whatwe see,although because packetscan be
delayed both in thenetwork (to a sm allextent:typical
routerqueuedelaysaresm all)and byschedulingdelays
atthegeneratingand receivingprocessors(especially if
theprocessorisheavily loaded),thegraph isnotquite
so regular.
Figures4 and 6 expressresultsin term softhenum -

berofobserved interarrivaltim esgreaterthan thetim e
on theX axis.(Noticethatthesegraphshenceplotthe
falsepositiveratethatwecan expectifweacceptthat
X-axis value as our de nition of\failure.") Figure 4
distinguishes the heartbeats received at bolasaccord-
ing to the originating host. Notice the wide variation
in loss rates and in the extent to which network and
scheduling delays skew the interarrivaltim es. Skew-
ing isparticularly noticeablefordata from theConvex
Exem plar at Caltech (\CIT:neptune"). Exam ination
of the interarrivaltim es observed by the local data
collector showed that this skew was due to delay in
scheduling the localm onitor,caused by high loadson
the processorrunning the localm anager.
O ur results con rm the generaltrends observed in

previous studies. The vast m ajority of interarrival
tim es correspond to a packetthatarriveswith no in-
tervening lost packet. Ifwe de ne \failure" as corre-
spondingtonoheartbeatseen for240seconds,then the
falsepositive rateislessthan 1 in a 100,000.Further-
m ore,it appears that som e ofthese \false positives"
are due notto an unfortunate seriesofdropped pack-
ets,but to tem porary losses in network connectivity
that lasted severalm inutes: that is, events that we
m ight wellwant to see signalled as \failures." M ore
rapid failure detection is possible,with som e increase
in false positive rates:forexam ple,at35 seconds,the
falsepositiverateis1 in a few hundred.M orefrequent
heartbeats would be required to reduce false positive
ratesatlow interarrivaltim es.
W e also m easured overheadsassociated with m oni-

toring.Thelocalm onitorsatthedi eren thostsshowed
CPU utilization averaging under1.3% ,with m inim um

Figure 7. An interactive display tool for
GUSTO fault data

and m axim um of0.05% and 1.5% ,respectively. M ost
ofthisutilization wasduetochildren ofthelocalm oni-
tors,which executed thesystem ps program to getthe
client status. The data collectors showed even lower
utilization,averagingunder0.14% ,with m inim um and
m axim um of0.06% and 0.29% ,respectively.

6.H B M A pplications

The HBM service has been used to m onitor the
health and status ofcriticalcom ponents in G USTO ,
a grid testbed that currently spans over 20 institu-
tions [8];and to detect server failure in a distributed
com puting system called NetSolve[4].
HBM is used in G USTO by system adm inistrators

to identify problem s in the testbed and to determ ine
which testbed sites are functional. W e are currently
using a single data collectorwhich can reportitsdata
through a web interface (e.g.,see Figure 7)or via an
em ailnoti cation system . This application revealed
thatdeterm ining the statusofarbitrary processescan
beexpensiveon som elargeparallelcom puters.Forex-
am ple,a ps com m and withoutargum entson a loaded
512-processor Cray T3E can take 17 seconds ofreal
tim e.Thistim e can be decreased signi can tly by pro-
viding ps with the listofprocesseswhose status isof
interest,a change that has been m ade in the current
version ofHBM .
HBM is used within NetSolve to construct a

application-speci c restart-based faultrecoverym echa-
nism .NetSolveisalibrary thatprovidesrem oteaccess
to m athem aticalsolvers and libraries such as ScaLA-
PACK .Client calls to a NetSolve-enabled library are

9

forwarded to a NetSolve agent, which transparently
dispatchesthecallto them ostcapableserverthathas
the library installed. Ifeither the server fails or the
serverornetworkbecom estooslow,theNetSolveagent
redispatchesthe requestto anotherserver.
NetSolve initially relied on the underlying network

transportlayertonotifyitofbrokenconnections.How-
ever,in m any situations,thisresulted in the NetSolve
agenthanging. Thisbehaviorhasbeen elim inated by
m odifying NetSolve to use HBM to detectserverfail-
ure.
O nly NetSolve servers register with HBM , while

NetSolve agentsactasdata collectors,m onitoring the
statusoftheserversto which they havedispatched re-
quests. Clients are not m onitored at all. Currently,
NetSolve shifts a com putation overto a new serverif
a single heartbeatism issed. However,since the over-
head ofm oving a problem to a new serverisknown to
the agent,it would be possible to wait for additional
m issed heartbeats ifthe cost ofresubm itting the re-
questishigh.

7 R elated W ork

Num erous distributed com puting system s incorpo-
rate faultdetection and recovery m echanism s. W e re-
view som e ofthis work here,contrasting it with the
approach described in thispaper. O urwork isdistin-
guished prim arily by its focus on providing a basic,
 exible service that can be used to construct a range
ofapplication-speci c faultbehaviors.
Distributed system s,such asISIS [1]and Horus[19]

provide high reliability via replication and ordered
group com m unication protocols.An ISIS-speci c fault
detection system , sim ilar to HBM ,is used to deter-
m ine when a process or com puter leaves a com puta-
tion.However,thisserviceisnotm adeavailableto the
application,noristhe application able to choose how
faultsarehandled.O rdered group com m unication op-
erationsenabletheconstruction ofrobustapplications,
buttheuseofreplication astheonly m eansofprovid-
ing faultrecovery m akesISIS unsuitable forsom egrid
applications,especially extrem ely large com putations
requiringtheuseofm ultiplesupercom putingresources.
Network batch queuing system s operate in dis-

tributed,networked environm entsand often usecheck-
point and restart techniques to provide fault toler-
ance. Checkpointing is provided in system s such as
CO DINE [11]and in high-throughputsystem ssuch as
Condor[13].Thefaultbehaviorsforthesesystem sare
lim ited to checkpoint/restartwith no supportform ore
robustdesign such asreplication.
In the Legion wide-area com puting system [12],a

hierarchy of\phoenix" dem onsisused to m onitorsys-
tem processes and restart them as needed. Applica-
tion faulttoleranceisprovided usingtheM entatm acro
data o w m odel, in which objects can be replicated,
with only one replica active and the rem aining dor-
m ant. The rst dorm ant replica is scheduled by the
Legion system only if it does not receive a reply to
a status query (ping) from the active replica within
a prescribed num berofseconds. W hile this approach
su ces fortheM entatprogram m ingm odel,itassum es
that system com ponents function perfectly and that
com m unication linksdo notfail.
In PVM [10] and the PVM -based SNIPE sys-

tem [14],faultdetection isperform ed by thePVM dae-
m on which islocated on each host,based on thereceipt
ofresponses(ornot)from thedaem onson otherhosts.
Application-levelfaultdetection m ustbe explicitly in-
cluded in the application program code.
W eissm an has com pared di eren t fault tolerance

techniques for wide-area m etacom puting [20]. In the
G allop system ,each site runs a Scheduling M anager
thatactively discoversthe statusoflocalm achinesby
\pinging" them . This m onitoring function has been
used to notify replication and checkpointing faulttol-
erance m echanism s,which were also com pared. This
approach detects som e hostand network failures,but
doesnotdetect the failure ofhostson which ping re-
sponses are generated independently by the network
card.Furtherm ore,itdoesnotdetecteithersystem or
application process failures,and the scheduling m an-
agersaresinglepointsoffailuresfortheirsites.

8 C onclusions and Future W ork

W e have described the design and im plem entation
ofa fault detection service for high-perform ance dis-
tributed com puting system s.By basing the serviceon
unreliablefaultdetection and providing a clearsepara-
tion between m onitoring,detection,and response,we
believe thatwe have succeeded in providing a exible
and e cien tcoreservicethatsupportsa widerangeof
application requirem ents.
In ourwork to date,wehavedem onstrated thatthis

servicecan be used by applicationswith m inim alper-
turbation toapplication structure.W ehavealsoshown
thatthisservicehasm inim alim pacton theload ofthe
m achine im plem enting the service,typically less then
1.5% CPU utilization. Furtherm ore,we have shown
that the use ofan unreliable fault detector does not
prohibitan application from m akingsensibledecisions,
asthecharacteristicsoftheunderlyingtransportm ech-
anism ensure that the probability of error decreases
with tim e.

10

W hile the HBM does well detecting process fail-
ure,discrim inating between host and network failure
is fundam entally di cult for any rem ote m onitoring
approach. Ifabsolutely no inform ation about a host
is obtainable (e.g.,a heartbeat) then it is im possible
to decide whetheritisdue to hostornetwork failure.
However,we do notregard this as a signi can tprob-
lem forourapplications,forwhich theknowledgethat
a hostisunavailable ism ore im portantthan knowing
why.
W eareworkingwith variousapplication groupsand

tooldevelopersto investigatefurthertheutility ofthis
fault detection service. W e expect to see a variety of
application-speci c fault recovery m echanism s im ple-
m ented, including the use of replication and voting
protocols. W e also hope to explore the use ofm ore
rigorousfaulttolerantbehaviorssuch asreliablegroup
com m unication prim itives,and to investigate the re-
lationship between heartbeat frequency,system over-
heads,failure criteria,and false positiverates.W e are
particularly interested in understanding the utility of
adaptivetechniquesthatm odify eitherheartbeatrates
orfailurecriteriain responsetoobservedheartbeatloss
behaviorand system overheads.

A cknow ledgm ents

Thiswork wassupported in partby theM athem ati-
cal,Inform ation,and Com putationalSciencesDivision
subprogram ofthe O ce ofCom putationaland Tech-
nology Research, U.S.Departm ent of Energy, under
ContractW -31-109-Eng-38;by the Defense Advanced
Research Projects Agency under contractN66001-96-
C-8523;and by the NationalScienceFoundation.

R eferences

[1] K .Birm an. The process group approach to reliable
distributed com puting.Com m unicationsofthe ACM ,
36(12):37{53,1993.

[2] J.-C.Bolot. Characterizing end-to-end packet delay
and loss in the internet. JournalofHigh-Speed Net-
works,2(3):305{323,1993.

[3] M .S.Borella, D .Swider, S.Uludag, and G .Brew-
ster. Analysisofend-to-end internetpacketloss: D e-
pendence and asym m etry. Technical Report 3Com
Advanced Technologies TechnicalReport AT031798,
3Com Corporation,1998.

[4] H. Casanova and J. D ongarra. Netsolve: A net-
work server for solving com putational science prob-
lem s.TechnicalReportCS-95-313,University ofTen-
nessee,Nov.1995.

[5] T.D .Chandra and S.Toueg. Unreliable failure de-
tectorsforreliable distributed system s.Journalofthe
ACM ,43(2),M ar.1996.

[6] K .Czajkowski,I.Foster,N.K aronis,C.K esselm an,
S.M artin,W .Sm ith,and S.Tuecke.A resourcem an-
agem entarchitecture for m etacom puting system s. In
The 4th W orkshop on Job Scheduling Strategies for
ParallelProcessing,1998.

[7] M .J.Fischer,N.A.Lynch,and M .S.Paterson. Im -
possibility of distributed consensus with one faulty
process.Journalofthe ACM ,32(2),Apr.1982.

[8] I.Foster and C.K esselm an. The G lobus project: A
progress report. In Proceedings ofthe Heterogeneous
Com puting W orkshop,1998.to appear.

[9] I. Foster and C. K esselm an, editors. The G rid:
Blueprintfora FutureCom putingInfrastructure.M or-
gan K aufm ann Publishers,1998.

[10] A. G eist, A. Beguelin, J. D ongarra, W . Jiang,
B.M anchek,and V.Sunderam .PVM :ParallelVirtual
M achine| A User’s G uide and Tutorialfor Network
ParallelCom puting.M IT Press,1994.

[11] G . S. G m bH. CO D INE: Com -
puting in distributed networked environm ents,1995.
http://www.genias.de/genias/english/codine.htm l.

[12] A. G rim shaw, A. Nguyen-Tuong, and W . W ulf.
Cam pus-widecom puting:Resultsusing Legion atthe
University of Virginia. Technical Report CS-95-19,
University ofVirginia,1995.

[13] M .Litzkow, M .Livny, and M .M utka. Condor - a
hunterofidleworkstations.In Proc.8th IntlConf.on
Distributed Com puting System s,pages104{111,1988.

[14] K .M oore,G .Fagg,A.G eist,and J.D ongarra. Scal-
able networked inform ation processing environm ent
(SNIPE).In ProceedingsofSupercom puting ’97,1997.

[15] L. M oser, P. M elliar-Sm ith, D . Agarwal, R. Bud-
hia,and C.Lingley-Papadopoulos. Totem : A fault-
tolerantm ulticastgroup com m unication system .Com -
m unications ofthe ACM ,39(4),1996.

[16] A.M ukherjee. O n the dynam ics and signi cance of
low-frequency com ponentsofnetwork load. Internet-
working: Research and Experience,5:163{205,1994.

[17] V.Paxson.M easurem entsand AnalysisofEnd-to-End
InternetDynam ics.PhD thesis,U.C.Berkeley,1997.

[18] S.M ullender(ed.).Distributed System s. ACM Press,
1989.

[19] R.van Renesse,T.Hickey,and K .Birm an.D esign and
perform ance ofHorus:A lightweightgroup com m uni-
cationssystem .TechnicalReportTR94-1442,Cornell
University,1994.

[20] J.W eissm an.G allop:The bene ts ofwide-area com -
puting for parallelprocessing. Technicalreport,Uni-
versity ofTexasatSan Antonio,1997.

11

